

Petrozavodsk State University Department of Computer Science

Sergey Marchenkov, Andrey Vdovenko, Oksana Petrina, Dmitry Korzun

A Smart Space-Based Design of Semantic Layer for Advancing Museum Information Services

The work is supported by the Ministry of Education and Science of Russia within project # 14.574.21.0060 (RFMEFI57414X0060) of Federal Target Program "Research and development on priority directions of scientific-technological complex of Russia for 2014–2020".

19th FRUCT Conference November 9, 2016, Jyväskylä, Finland

The History Museum of PetrSU

- It has the museum information system (MIS).
- Exhibits are presented as photographs and various textual documents, newspapers, academic journals, etc.
- It is oriented to everyday life history.
- Virtual exposition is presented on eight touch-screens.

Semantic Layer in a Smart Museum

The layer aims at solving the following application problems:

- adding text and voice semantic annotation about the exhibits by the visitors and museums personnel collectively;
- semantic information linking of annotations about the exhibits in the museum collection;
- g personalized search for information about the exhibits based on user requests taking into account the context;
- 4 automatic generation of a virtual exposition based personalized context information.

Smart Museum Environment

- The layer becomes responsible for construction and delivery of semantic services:
 - visit service:
 - exhibition service;
 - semantic enrichment service.
- Smart museum space follows an ontology and is represented using RDF.
- The semantic network is a directed graph consisting of nodes, which represent exhibits, events, persons, etc.

Software Infrastructure

- Software infrastructure implements the semantic layer as the multi-agent service-oriented information system.
- Software infrastructure is based on Smart-M3 platform.
- It consists of the semantic information broker (SIB) and knowledge processors (KP).

Classes of IoT-enabled devices

Class of devices	Description	
Public multimedia	They include interactive screens, media projectors, and mi-	
devices	crophones. The devices are primarily for service consump-	
	tion by visualization.	
Personal mobile	They include smartphones, tablets, and laptops. The de-	
devices	vices can be used for personalized service delivery and par	
	ticipation in the activity.	
Server machines	They are responsible for data storage and processing func-	
	tions. Typically the devices are non-local, e.g., a server is in	
	the corporate network or in the Internet.	
Local computers	They are responsible for service construction based on	
	search and analysis of shared content in the semantic net-	
	work. Typically, they are physically present in the room.	
Smart IoT devices	They represent physical things augmenting them with pro-	
	cessing and communication capabilities, e.g., a exhibit is	
	equipped with RFID to provide description for close devices.	
Network	They create local area networks such that all other partici-	
communication	pating devices can communicate locally as well as have ac-	
devices	cess to external resources.	

Visit service

The service is responsible for construction of a visit program and for visualization of this program on the main screen.

Exhibition service

The service performs selection of exhibits from the created visit program for formation of virtual exhibitions on a series of screens.

exhibitions representation

Semantic Enrichment Service

The result of the service is enrichment of museum information model.

Ontology for Visit Program

- Class Visit Program stores a title, description, time stamp, and exposition structure.
- Property firstExhibitSlot is used to arrange the exposition structure.
- Class Relation provides linking capabilities of exhibits.
- Data property RelationType expresses relation between other exhibits and persons.

Ontology for Visitor Profile

- Class Person represents a visitor following the FOAF specification.
- Linking a person to profile provides search function for making recommendations.
- User context is the important point for semantic search.
- The user has preferences in the terms of interesting exhibits for her/him.

Notification Model

- Based on publish/subscribe model.
- Simplifying interaction between agents.
- Activity individual variant solves the task for notification of a concrete user about updates in her/his exhibits.

Name		Description
KP	Semantic Analysis	Carrying out additional analysis to
Notification	newExhibit	discover new relations with
Parameter	Exhibit	appearance of new Exhibit.
KP	Semantic Analysis	Carrying out additional analysis to
Notification	newExhibitReview	discover new relations with
Parameter	ExhibitReview	appearance of new ExhibitReview.
KP	Visit program	Screen content changing
Notification	changeScreenMode	accordingly with parameter
Parameter	screenMode	screenMode.
KP	Expositions coordinator	
Notification	changeSlide	Changing current slide on screen.
Parameter	slideUrl	

Conclusion

- Studied the semantic layer represents the opportunities for constructing services that enhance the existing MIS.
- Developed design of the semantic layer implements the latter as a Smart-M3-based software infrastructure.
- The proposed solutions were analyzed in respect to the case study of the History Museum of PetrSU.
- The proposed solutions can serve as reference ones for development of other museums and cultural heritage areas.

Thank you for attention

E-mail: vdovenko@cs.karelia.ru